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ABSTRACT
Millions of drivers worldwide have enjoyed financial benefits and

work schedule flexibility through a ride-sharing economy, but mean-

while they have suffered from the lack of a sense of identity and

career achievement. Equipped with social identity and contest the-

ories, financially incentivized team competitions have been an ef-

fective instrument to increase drivers’ productivity, job satisfaction,

and retention, and to improve revenue over cost for ride-sharing

platforms. While these competitions are overall effective, the deci-

sive factors behind the treatment effects and how they affect the

outcomes of individual drivers have been largely mysterious. In

this study, we analyze data collected frommore than 500 large-scale

team competitions organized by a leading ride-sharing platform,

building machine learning models to predict individual treatment

effects. Through a careful investigation of features and predictors,

we are able to reduce out-sample prediction error by more than

24%. Through interpreting the best-performing models, we discover

many novel and actionable insights regarding how to optimize the

design and the execution of team competitions on ride-sharing

platforms. A simulated analysis demonstrates that by simply chang-

ing a few contest design options, the average treatment effect of

a real competition is expected to increase by as much as 26%. Our

procedure and findings shed light on how to analyze and optimize

large-scale online field experiments in general.

CCS CONCEPTS
• General and reference→ Experimentation.
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1 INTRODUCTION
The rise of the sharing economy has brought dramatic changes to

work and life in modern society. The financial benefits and work

schedule flexibility offered by online ride-sharing platforms, such

as Uber, Lyft, and Didi Chuxing, have attracted tens of millions of

drivers to serve as ride providers. While the drivers enjoy all the

values of the ride-sharing economy [9], they commonly complain

about new barriers to job satisfaction and retention, such asworking

alone, having few bonds with colleagues, no clear career paths,

and a lack of a sense of achievement (e.g., [18]). How to retain

and incentivize service providers to better cover the dynamics of

demand has also been a critical problem for the platforms.

Team competitions, practices rooted in social identity theory [3]

and contest theories [33], have been recognized as a potential cure

for the pain on both sides. Through competing as teams, drivers

are able to (1) build team identity and social bonds with teammates;

(2) create a sense of achievement by winning a competition; and

(3) increase their satisfaction and performance at work [2]. The in-

crease in driver productivity often outweighs the cost of organizing

and providing financial incentives for these competitions, which

creates a win-win situation for both the drivers and the platform.

Indeed, Didi Chuxing (DiDi), one of the world’s leading ride-

sharing companies, has launched recommender systems to help

their drivers form teams and has organized many financially re-

warded team competitions to enhance their satisfaction and pro-

ductivity [35]. In 2018 alone, more than 1,400 team competitions

were successfully held across 180 cities, which together involved

more than 1 million drivers, who provided 130 million rides. These

competitions have yielded promising outcomes overall: the average

return on investment is larger than 5, indicating that the increased

platform revenue through these competitions is five times the cost.

Behind the overall success, however, plenty of unknowns, pit-

falls, and challenges remain. There is huge heterogeneity among

the cities, the competitions, the teams, and the drivers. Such hetero-

geneity produces variation in outcomes (or the treatment effects of

these experiments):What types of drivers and teams benefit more

from team competition?What competition designs better increase
driver performance? In what context is a competition more likely to

be effective? Why does a design work in one city but not in another?
Understanding how these factors predict the outcomes of individual

drivers would not only help the platforms find the optimal design

of team competitions for different populations of drivers, but would

also help them generalize the success to new contexts.

Addressing these questions is challenging not only for human op-

erational practitioners but also for data mining algorithms. First, it

is intrinsically difficult to measure the causal effect of experiments,

which requires a careful definition of individual outcome measures
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and targets of prediction. Second, the variable space to capture dri-

ver, team, contest, and context characteristics is high-dimensional,

with complex relationships among them. Identifying the potential

predictive factors calls for sophistication in both domain knowledge

and data analytics. Third, the large-scale data involve millions of

drivers and transactions and many real-world contexts, requiring

the prediction algorithms to be scalable and interpretable.

In this paper, we take a systematic approach to address these

challenges. We formulate the problem as a task to predict the treat-

ment effects of a team competition on individual drivers, to which

we apply both linear and non-linear machine learning models. Com-

bining insights from both business practice and literature on virtual

teams and team competition, we construct a large variety of fea-

tures and train the prediction model using the data of hundreds

of large competitions and half a million drivers. The objective of

this study is not to prove the causal effect of team competition but

to predict individual driver’s performance in out-of-sample/future

competitions. The former is analyzed in an earlier study based on a

rigorously randomized field experiment (with no self-selection or

pre-participation) using formal econometric analysis [2].

Evaluated on out-sample competitions, the best-performingmodel

is able to reduce the prediction error from the baseline by 24.50%.

A careful interpretation of the models reveals intriguing predictive

power of many factors (for individual treatment effects): some are

intuitive, such as team homophily, social influence, supply-demand

ratio, and weather conditions; some are rather surprising, such as

team diversity, pre-contest activities, and the design of monetary

incentives; and many of them have never been reported in the

literature. Some of the factors are directly actionable in business

practice, and a simulation analysis demonstrates that by simply

varying several contest design options, one is expected to increase

the average treatment effect of a competition by as much as 26%.

To summarize, we make the following major contributions:

• We present the first study of individual treatment effects of

team contests in a sharing economy. While existing work

measures the average effect of an experiment, we analyze het-

erogeneous, per-driver outcomes across many experiments.

• We define a robust estimation of individual treatment effects

and formulate a novel approach to predicting individual

treatment effects through machine learning.

• We train effective machine learning models on large-scale

data collected fromhundreds of historical experiments, which

combine a comprehensive set of features of individual dri-

vers, teams, contest designs, and experimental environments,

and we evaluate the models on out-sample experiments.

• We reveal the predictive power of a variety of factors for the

outcome of individual drivers, most of which are novel.

• We identify actionable implications for business practice and

demonstrate significant potential improvements in experi-

mental outcomes by varying several contest design options.

2 RELATEDWORK
This study is related to the following lines of literature:

Sharing economy. A growing literature investigates the socio-

economic effects on and consequences of ride-sharing platforms,

such as Uber and Lyft [36]. Inspired by the findings in [17] that eco-

nomic gains positively influence people’s intention to participate, a

stream of work quantifies the positive effect of financial incentives,

such as subsidy [14], on improving supply-demand efficiency. Our

study adds to this literature by investigating the effect of rewarded

team competitions on service provision in a ride-sharing economy.

Team competition. Team competitions have been increasingly

applied in online communities, such as crowdsourcing [27], educa-

tion [28], online games [11], and charitable giving [10]. It has been

shown that team competitions are effective in improving key met-

rics, such as participation [28]. Data-mining researchers have devel-

oped team matching algorithms to ensure team formation of high

efficiency, effectiveness, and fairness, taking into account factors

such as demographics, social networks, and tasks (e.g., [1, 4, 35]).

Most of these studies demonstrate the effect of team competitions

through either field experiments or analyzing observational data.

The former usually estimate the treatment effect at the experiment

level, averaged over all treated teams and participants (e.g., [10,

27, 28]). Studies of the latter have examined team-level properties

and their influences on team performance in online games, such

as the positive factor of diverse team composition [11]. To the

best of our knowledge, few have aimed to analyze and predict

the heterogeneous effect of team competitions on individual team

members, especially in the context of the sharing economy.

Individual treatment effects & counterfactual analysis. Re-
cent work in causal inference and machine learning has focused

on a finer granularity – individual treatment effect (ITE) estima-

tion, citing its potential in precision medicine [13] and online plat-

forms [23]. Estimating ITE has been done with random forests [6]

and deep neural networks [29], and it has taken into account hidden

confounders from network information [16]. We base our analysis

on a collection of online controlled experiments [21]. We are able

to estimate ITE with difference-in-differences (DID), as the team

contests already include randomly selected control groups. We thus

focus on the prediction of ITE.

Another related stream of literature is counterfactual learning,

where the focus is to learn what policies maximize some rewards,

such as engagement or conversion in online advertising [8, 31].

The counterfactual estimators are typically based on importance

sampling. Our paper also examines how policy (which is the contest

design in our setting) predicts ITE, but we study the predictors of

ITE in a much more complex socio-economic setting.

3 PROBLEM SETUP
3.1 Team Competitions on DiDi
Since 2017, team competitions (also referred to as team contests)

have been widely introduced as driver incentive campaigns in DiDi

[2]. A typical team contest is held in one city and consists of two

periods: a team building period and a contest period (see Figure 1).

Team building period. The team building period starts with a

call for participation and usually lasts 3-7 days. During this period,

interested drivers sign up for the contest and start teaming up. Dri-

vers can create a new team as captain or join an existing team by

invitation, and they can invite other drivers into a team either man-

ually or assisted by a recommender system [35]. All participating
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Figure 1: Workflow and Treatment Effect of a Team Contest

teams in one contest have the same size: one captain and 2 to 7

other regular members.

About half of the teams achieve the desired size during the team

building period; these are referred to as self-formed teams. At the

end of the team building period, the system randomly selects 90%

of the unteamed drivers and groups them into full-sized teams,

which we refer to as system-formed teams. The other 10% are not

assigned to any team and will not participate in the competition;

they are referred to as solo drivers. These solo drivers have the same

motivation level (to participate in the contest), productivity, and

other demographic properties compared to the drivers who are

assigned to teams, and they form a nice group for comparison. The

system keeps track of the solo drivers for control.

Contest period. Both self-formed and system-formed teams will

compete during the contest period. The teams are further parti-

tioned into smaller contest groups. Each contest group contains

the same number of (usually 5) teams of comparable competitive-

ness, measured by their productivity prior to the contest. A team

only competes with other teams within the contest group and will

win a cash reward according to its standing in that group. The

performance of a team is calculated by summing the productiv-

ity of team members, measured by their daily revenue, number of

rides, or a combination of both. During the contest period, a driver

can check the performance of their team members and competitor

teams through a real-time leaderboard. Under these general con-

straints, every city can choose among finer-grained design options

(such as incentive structures). We will summarize these contest

design options in Section 4.1.

These team contests have been quite successful in general. Dur-

ing a contest, a driver’s daily revenue on average increases by 22%,

and the revenue over investment (ROI, which measures revenue of

the platform over cost) is over 5. While the average treatment effect

provides an overall picture of the effectiveness of team contests, it

is critical to understand the treatment effect on individual drivers to

untangle the complex interplays among participants, teams, contest

design, and experimental environments. Only through this can the

platform optimize their recommender systems and contest designs,

provide targeted interventions for different population of drivers,

and to generalize the success to new contests, cities, and countries.

3.2 Estimating the Individual Treatment Effect
We need to first estimate the individual treatment effects before

analyzing and predicting them. Estimating the individual treatment

effect by itself can be challenging in natural experiments and ob-

servational data [6, 23, 29]. In our scenario it is easier, as all the

competitions followed a rigorous experimental design.

The individual treatment effect (ITE) refers to the effect of a

single team contest on the revenue of an individual driver. In other

words, the effect measures how much additional revenue a driver

generates by participating in a team competition as opposed to oth-

erwise. Given the competition setting, we estimate the individual

treatment effect using a standard difference-in-differences (DID)

approach [5] in causal inference. The intuition of DID is to first

compute the difference in revenue before and during the contest for

each driver, aggregate such within-driver differences by treatment

status (treatment vs. control), and compare the differences between

the two conditions. In our case, the control group is clear - the solo

drivers (drivers who are not teamed). We have two possible defi-

nitions of the treatment group: (1) drivers in both system-formed

and self-formed teams; (2) drivers in system-formed teams only.

Ideally, drivers in system-formed teams are the most comparable

to solo drivers, as self-formed teams might differ in motivation or

pre-contest history, which introduces a potential selection bias. In

business operation, however, we do care about making predictions

for all drivers. We therefore separately analyze the two scenarios:

using “all teams” and using “system-formed teams” as treatment

group. If the results are consistent, that means the estimation of

ITE can generalize from system-formed teams to all teams.

Formally, we define 𝑅 𝑗,𝑇 as the average daily revenue generated

by driver 𝑗 in the time period𝑇 .𝑇 = 𝑇1 indicates the contest period

while 𝑇 = 𝑇0 indicates a baseline period before contest starts. 𝑇0 is

selected as the most recent days prior to the call for participation,

conditioned on matching the length and the day(s)-of-the-week

of 𝑇1. The choice of 𝑇0 rules out day-of-the-week confounds on

revenue (see Figure 1 for illustration).

The within-driver difference in revenue between the contest

period and the baseline period can thus be calculated as

Δ𝑅 𝑗 = 𝑅 𝑗,𝑇1 − 𝑅 𝑗,𝑇0 . (1)

We then aggregate the revenue change in the control group as

Δ𝑅
control

=
1

|control |
∑

𝑖∈control
Δ𝑅𝑖 . (2)

Finally, we can obtain the individual treatment effect as

Δ𝑅ITE𝑗 = Δ𝑅 𝑗 − Δ𝑅
control

, (3)

for every driver 𝑗 in a team. If we calculate the average value of the

ITE of a given contest, we will get the average treatment effect (ATE)
of that contest. More precisely, since we can only obtain the ITE of

treated drivers (participating in the team contest), the aggregated

ITE represents the average treatment effect on the treated (ATET).

3.3 Predicting the Individual Treatment Effect
We collect a dataset from all competitions held between January

1, 2018 and August 23, 2018. Contests that did not hold out the

10% solo drivers are excluded, as we lack the control condition to

calculate ITE. We also exclude the contests conducted during the

lunar new year, as the supply and demand pattern in that period

is irregular. For all selected contests, we collect the demographics

and historical activities of all drivers who sign up for the contests,



Table 1: Summary of Statistics
Item Number Item Number

# of Cities 143 # of Unique Drivers 520,611

# of Contests 520 # of Cumulative Participation 887,842

regardless of whether they are in the treatment or control group.

Table 1 presents the summary statistics of the contests included.

Based on this dataset, given every contest 𝐶𝑘 , we are able to

represent it with a list of driver-independent features (such as infor-

mation about the city and the contest design), F𝐶𝑘
. For every treated

driver 𝑗 in𝐶𝑘 , we are able to estimate the treatment effect of𝐶𝑘 on

𝑗 , Δ𝑅ITE
𝐶𝑘 , 𝑗

. Let the start time of the team contest period of 𝐶𝑘 be 𝑡𝑘 ;

we represent a driver 𝑗 with a set of features about their demograph-

ics or activities that are observed before 𝑡𝑘 , denoted as F𝑗,𝑡𝑘 . We

are also able to represent the team that 𝑗 joins, team( 𝑗), with a set

of features F
team( 𝑗) . Note that Fteam( 𝑗) could contain aggregated

features of its members, or F
team( 𝑗) ∼ 𝑔(F𝑖,𝑡𝑘 |𝑖 ∈ team( 𝑗)).

Given these notations, we define the problem of predicting the

individual treatment effect as finding a function 𝑓 (·) that maps the

feature representations of the contest 𝐶𝑘 , a driver 𝑗 , and the team

team( 𝑗) to the treatment effect of 𝐶𝑘 on 𝑗 , that is,

Δ𝑅ITE𝐶𝑘 , 𝑗
= 𝑓 (F𝐶𝑘

, F𝑗,𝑡𝑘
, Fteam( 𝑗 ) ) . (4)

The prediction problem as defined is intrinsically challenging.

First, predicting human behavior is hard given the great complexity

in cognition and decision making [30]. Second, Δ𝑅ITE
𝐶𝑘 , 𝑗

as defined

is essentially a “change” in behavior, which is harder to predict

than the behavior itself. Moreover, the huge heterogeneity among

drivers, teams, contests, time, and environments results in a wide

variation in the ITE. These challenges call for a careful selection of

features and predictors. In the following sections, we show how to

extract the feature representations of F𝐶𝑘
, F𝑗,𝑡𝑘 , and F

team( 𝑗) , and
how to find the function 𝑓 (·) through amachine learning approach.

4 PREDICTIVE FEATURES
Our comprehensive dataset presents unprecedented opportunities

to measure a wide portfolio of conditions related to the driver,

the team, the contest, and the experimental environment. In this

section, we characterize these conditions as informative features,

generated based on the theoretical insights from the literature on

contest theory, social identity theory, and virtual teams, as well as

the domain knowledge from the operational practitioners at DiDi.

4.1 Contest Design
We start with contest design features, such as the winning condition

and the prize structure. This set of features determine the utility

function of the participants and directly affect their motivation and

efforts devoted. Currently, the platform relies on their intuitions to

decide contest designs. They are eager for actionable insights and

guidance on how to optimize these designs. Apart from execution

options such as team size, contest-group size, and timing, we build

upon the theoretical inferences in contest theory or social identity

theory to describe the incentive mechanisms in contest design.

For example, how to allocate the prizes in a contest group? Give

them all to the best-performing team or split over several place-

ments? Although this question has been analyzed in contest theory:

under certain assumptions, rewarding the best in the contest group

is the optimal strategy [24], it is seldom tested in field. We code the

team bonus for each of the top 5 teams in a contest group.

4.2 Driver Properties
This set of features capture the demographics and behavioral pat-

terns of a driver before the contest, which we assume would affect

the outcomes. To depict driver behavioral patterns before compe-

titions, we retrieve drivers’ daily revenue, daily number of rides,

and daily hours on the platform, each in three periods: the baseline
period (see Section 3.2 and Figure 1), 7 days before the contest starts,

and 30 days before the contest starts. These features are designed

to capture the most comparable activities to the contest period, the

most recent activities before contest, and the longer-term work

habits. We also collect driver demographics, such as age, gender,

and number of months on platform (i.e., DiDi age).

4.3 Team Properties
This set of features are related to team-level characteristics that

may significantly influence the behaviors of a member. Apart from

basic team characteristics (e.g., size), we investigate team diversity,
team history, team competitiveness, and the influence of team on
individual driver, drawing upon previous literature [1, 25, 26, 34].

For example, we capture team diversity from three aspects: age
diversity, hometown diversity, and diversity in activity region. As
illustrated by Figure 2a, age diversity is shown to be a potential

strong predictor of ITE. For another example, to depict team history,
we calculate the average number of times that any two teammates

have been in the same team before this competition. While litera-

ture has reported both the positive and the negative effect of team

history on team performance [26], Figure 2b shows that the rela-

tionship between team history and ITE follows an inverse-U shape:

no history and too much history could be equally harmful! Teams

perform the best when on average half of the pairs of drivers have

been teammates before, or translated to roughly 70% old members

and 30% new members if a team is built on a previous team.

(a) (b)

Figure 2: Relationship between Features and ITE

4.4 City Properties
We also consider the environments where a contest is held, which

may influence the motivation and outcome of the contest. We de-

scribe the status quo of DiDi in the contest city with the number

of historical team contests, the number of DiDi drivers, and their

average hourly pay. Moreover, we consider general demographics

of the city, such as its development level and the province it belongs

to. We also retrieve the weather reports of the city during a contest.

A more comprehensive list of features can be found in Table 2.

Preliminary analysis has identifiedmany correlations between these

features and the ITE, although we only show two of them due to

the space limit, promising the feasibility of predicting the ITE.



Table 2: Feature Examples (More Details in Supplement Table 5)

Bonus 

Other

Demographics

Behavioral

Diversity
History
Team Size
Formation
Competitiveness

Social Influence

DiDi Related

Demographics

Contest Design
Fixed Team Bonus in a competition group
Pooling Team Bonus in a competition group
Minimal performance threshold to get a team bonus 
Captain extra bonus
Other Bonus (e.g, individual goal-setting bonus)
Team performance evaluation metric
# of teams in a competition group
# of workdays in the competition

Basic demographics, such as gender and age
DiDi spedific, such as DiDi age (months after joining)

Driver Properties

Driver daily revenue Avg. & Std. in different periods
Historical competition participation and performance

Team diversity in age, hometown and region of activity
# of times some teammates has teamed up before 
Team size: # of drivers in the team

Team Properties

Province and geographical region of the city
Tier of city representing development, population, economics, etc.

System-formed versus self-formed teams
Absolute competitiveness of team Avg. daily revenue
Relative difference of team Avg. daily revenue from the best team
Team on driver: Δ daily revenue (driver Avg. - team Avg.)
Best team on driver: Δ daily revenue (driver Avg. - best team's Avg.)

City Properties
Hourly pay Avg. of all drivers in the city
Supply-demand rate daily Avg. at the city level
# of active drivers in the city
# of other rewarded activities in the city during the competition

5 PREDICTING ITE
Towhat extent can the combination of the factors in Section 4 jointly

predict the ITE? Practically, it is also valuable to know how these

predictions generalize to out-sample, new competitions. Building

machine learning predictors is a desirable solution for both aspects.

5.1 Model Training and Evaluation
We expand the feature exploration and craft 555 features to repre-

sent factors of contests, drivers, teams, and cities (see Table 2).

We follow the standard practice and split the contests into train-

ing, validation, and test sets based on the timing of the contests.

Details can be found in the supplement. The performance of a

machine learning predictor can be measured with RMSE:

RMSE =

√√∑
𝑘,𝑗

(
Δ𝑅ITE

𝐶𝑘 , 𝑗
− Δ�̂�ITE

𝐶𝑘 , 𝑗

)
2

/
∑
𝑘

𝑁 (𝐶𝑘 ), (5)

where 𝑁 (𝐶𝑘 ) is the number of drivers participating in contest 𝐶𝑘 .

There are many machine learning models that can be used for

building the predictors. Our main goal is not to optimize the pre-

diction accuracy but rather to understand the effect of individual

predictive factors on the target – the ITE. Therefore, we consider

two objectives in selecting the machine learning algorithms: (1)

they should be able to capture the linear and non-linear effects

of features and their interactions; (2) they should provide an easy

mechanism to interpret the predictive power of individual features.

We select two standard and commonly used algorithms. One is

Lasso [32]. As a linear model, the learned coefficients provide a

natural interpretation of the predictive power of features. The other

is Gradient Boosted Regression Tree (GBRT) [15], which can cap-

ture the non-linearity and interactions of the features. The feature

importances reported by GBRT can help interpret the contributions

of different features in predicting ITE.
1
We also train Ridge models

[20] to verify the robustness of linear models to different regulariza-

tion. We did not choose neural networks as it is harder to interpret

the importance of individual features with a deep neural network.

5.2 The Prediction Performance
We tune the hyperparameters of the machine learning models rigor-

ously based on validation RMSE and report the performance of the

models on test set (contests starting in August) in Table 3. We con-

struct two baseline predictors for comparison. The uniform baseline

predicts all ITE as the mean ITE in the training set, while the ran-

dom baseline draws from a Gaussian distribution estimated from

the ITEs in the training set. We separately train the models in two

settings, one with drivers in all teams and one with system-formed

teams only. From Table 3, GBRT, Lasso, and Ridge all achieve similar

performance, reducing RMSE from the better baseline (Uniform) by

up to 24.50% (𝑝 < .01) on all teamed drivers and 24.77% (𝑝 < .01) on

drivers in the system-formed teams only. The consistency between

the two settings suggests that the estimation of ITE can generalize

from the system-formed teams to all teams.

Note that both GBRT and Lasso are "selecting" features dur-

ing the training process. By examining the non-zero coefficients

in Lasso and the positive feature importances in the GBRT, we

can know which salient factors the two models rely on to make

predictions. As we can see from Table 3, the numbers of features

selected by the different models are quite different (251 vs. 119). In

other words, the two models achieve similar performance based on

different sets of features, due to the different model structures.

Table 3: Model Performance, Evaluated by RMSE
All-teams Drivers System-formed-teams Drivers

Model Val. R. Test R. # Ftr. Val. R. Test R. # Ftr.

GBRT 139.19 147.96 251 125.00 139.67 248

Lasso 141.75 148.46 119 137.25 141.40 116

Ridge 142.16 150.55 555 136.26 143.65 552

Uniform - 195.97 - - 185.66 -

Random - 266.34 - - 250.63 -

6 ANALYZING PREDICTION RESULTS
6.1 Which Features Predict Treatment Effects?
We examine the most predictive features nominated from both

models. Figure 3a and 3b each show 20 selected features from the

best-performing GBRT and Lasso models with all-teams dataset.

Both all-teams and system-formed-teams datasets produce similar

results, and we choose to report the former since we do care about

making predictions for everyone when deployed in the operations.

6.1.1 Contest Environment.
We start with a set of factors about the environment of the contest.

Weather. The largest (negative) factor by Lasso for the individ-

ual treatment effect is the proportion of snowstorm days during a

competition (𝑝 < .01). This is easy to understand as severe weather

conditions would limit travel activities and driving efficiency.

Location. We observe clear heterogeneity of ITE in different

locations. Contests held in certain provinces or cities have signifi-

cantly higher/lower effects. Basic demographics of the city (such

1
Weuse glmnet 3.0-2 package (https://cran.r-project.org/web/packages/glmnet/index.html)

for Lasso, Ridge; scikit-learn 0.20.0 package (https://scikit-learn.org/stable/) for GBRT.
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Figure 3: Importance Scores of Selected Features from the Best-performing GBRT and Lasso Model for All Teamed Drivers

as population) do not appear to be predictive. The geographical

heterogeneity may attribute to other properties of the locations.

Supply-Demand Rate. Surprisingly, the second largest negative

factor identified by Lasso is the supply-demand ratio of the city

where a competition is held. Team competitions are more effective

in cities of greater supply shortage (𝑝 < .01). This makes sense, as

when supply can’t meet demand, more effort of a driver ensures

more profit. When supply exceeds demand, even if drivers intend to

work harder, they are unlikely to receive more orders. This finding

is directly actionable: sharing economy platforms should prioritize

incentive-based experiments in areas of a greater supply shortage.

6.1.2 Driver Demographics.
Young means high? No! The sharing economy has been commonly

perceived as a "young people’s business."
2
However, we find that

middle-aged drivers and those who have joined the platform earlier

experience greater treatment effects. In both GBRT and Lasso, age

of driver is one of the most predictive features. Indeed, in Figure 4a,

we observe that the treatment effect of team competitions increases

with age, tops among drivers in their 40’s, and decreases when

drivers are over 50. One possible interpretation may be the high

economic pressure on the middle-aged group. ITE also increases

with a driver’s age on platform. A longer lifespan on the platform

indicates more experience and a greater motivation to stay in the

business. From Figure 4b, veterans (on DiDi for over a year) have

higher ITE (𝑝 < .05), and the trend does not drop down.

Rental Cars. Results show that drivers are more productive in

competitions when they don’t own their vehicles but have rented

from a DiDi partner (𝑝 < .01). One possible reason is that these

drivers are more motivated to earn extra rewards to cover the rental

cost, or simply the rental vehicles are in better conditions.

6.1.3 Pre-contest Activities.
The pre-contest activities of a driver show strong predictive power.

Productivity in Previous Competition. Results (see Figure 3a)

suggest that the individual treatment effect of this contest depends
on the revenue the same driver received in the previous contest

they participated in (𝑝 < .01). Not surprisingly, if a treatment was

effective on someone, the same thing would likely work again.

Productivity Variation. One of the most surprising factors

is the variance in pre-contest activity levels. Results show that

2
https://www.forbes.com/sites/homaycotte/2015/05/05/millennials-are-driving-the-

sharing-economy-and-so-is-big-data/, retrieved in October, 2019.
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Figure 4: Relationships between Features and ITE

the standard deviation of a driver’s daily revenue in the 30-day

period before the contest has a positive correlation to the treatment

effect (𝑝 < .01) from Figure 4c. Similar effects are observed when

productivity is measured by work time or number of orders. When

a driver’s work habits are irregular, inner-team coordination may

drag their behavior towards the social norm. Drivers of a high

variation are also likely to be working part-time, and they have

more room to improve through the competition.

6.1.4 Team Properties.
Team structures and interrelations between members are also pre-

dictive. In social network and organization literature, there are the-

oretical and empirical discussions about how structural properties

affect the functionality of a team or community (e.g., [7, 11]). Our

analysis provides empirical evidence (in the context of the sharing

economy) to these theories while also reveals novel findings.

Homophily. From Figure 3b, we observe that homophily (simi-
larity of team members) by region of activities is a strong predictor

of the treatment effect. This effect is positive and almost linear (see

Figure 4d). Previous literature suggests that physical distance (the

https://www.forbes.com/sites/homaycotte/2015/05/05/millennials-are-driving-the-sharing-economy-and-so-is-big-data/
https://www.forbes.com/sites/homaycotte/2015/05/05/millennials-are-driving-the-sharing-economy-and-so-is-big-data/


inverse of homophily) negatively influences the performance of

virtual work teams as it reduces shared contextual knowledge, emo-

tional attachment, and non-verbal cues in collaborations among

team members [22]. Our result extends previous work by finding

that physical distance is harmful (𝑝 < .01) even when it requires

little coordination and communication to complete the team tasks.

System-formed Teams. The method of team formation is an

important predictor in both models. Teams filled by the system on

average yield a smaller treatment effect than teams fully formed by

drivers (𝑝 < .01). We note an apparent confound that drivers who

form teams without the help of the platform already knew each

other: they may be acquaintances in real life (related to homophily)

or they may have been teammates in previous competitions.

Role of captain. We find that team captains generally have

higher ITE than other team members during competitions (𝑝 < .01,

see Figure 3b). This is intuitive, as drivers who volunteer to be cap-

tains are likely to be more dedicated. Another possible explanation

is that the captains are “leading by example” [19].

Social influence. A rather intriguing finding by the GBRT is

that social influence, rather than individual behaviors, is a strong

predictor of ITE. As shown by Figure 3a, the top feature measures

the difference between the pre-contest productivity of a driver

and the average pre-contest productivity of the team. The lower

a driver’s pre-contest productivity is than the team average, the

higher their productivity increases through the team competition

(𝑝 < .01). This desirable outcome may be attributed to how a team

functions, as social influence drags the inactive or inexperienced

drivers towards the norm [12]. Note that for drivers who were

already significantly more productive than their team average, the

team may have also dragged them backwards towards the norm.

Do these drivers constitute a large proportion in each team? By

calculating the difference between the pre-contest productivity of

individual drivers and the most productive team member instead

of the team average (Figure 4e), we see that most drivers receive a

positive social influence, unless they are (or are close to) the most

productive ones in their teams (with this difference close to zero).

In contrast, drivers are more motivated when the pre-contest

productivity of their team is closer to that of their competitors. As

shown in Figure 4f, ITE is higher when the pre-contest productivity

of a team is closer to that of the winning team in its contest group.

These findings provide novel insights for both team formation

and contest design: it is desirable to mix drivers with different

activity levels, so that the more productive/experienced drivers

may help the others and improve team performance. However,

such a service role may hinder the motivation of the top drivers

and slow down their own productivity, so it is important to provide

additional incentives to the helpers. It is also important to match

the competitors so that all the teams are competitive in the group.

6.1.5 Contest Design.
More is Less! Contrary to common sense, our results show that

providing more bonuses does not necessarily lead to a better out-

come. Specifically, the Lasso model suggests that while in general

drivers work harder for high financial rewards, an ill-designed ex-

tra bonus could inhibit the treatment effect. For example, when

the 5th-performing team (the bottom team in most contests) in a

contest group is rewarded, drivers become less motivated as ev-

eryone is guaranteed some reward (𝑝 < .01). In addition, if team

captains receive an extra bonus, drivers in general become less pro-

ductive (𝑝 < .01). The inequality between captains and members

might have shifted the team goal from fighting for team identity to

fighting for the captain, reducing the motivation of others.

Inner-team Competition. Adding enforced within-team com-

petition might hurt the treatment effect: drivers are less productive

if the revenue of the worst-performing driver is excluded from

calculating team performance and bonus allocation (𝑝 < .01). Note

that without this arbitrary mechanism, there is also implicit, natural

competition among teammembers, as in most contests, the rewards

are allocated based on the contributions of members.

In general, the above findings are directly actionable by contest

organizers, to improve the outcomes of team contests by simply al-

tering a few design options, at an even lower cost. We will show the

potential of these opportunities with more details in Section 7.1.1.

6.2 Which Cases are Harder to Predict?
While the the best-performing models have already improved the

baseline by 24% and generated lots of insights, the accuracy num-

bers do not look perfect. Indeed, individual treatment effect is per-

haps one of the hardest targets for a prediction task [13].We conduct

an error analysis of the best-performing GBRT model, trying to

obtain insights into what have been the harder/easier cases.

We calculate both the prediction error (Δ𝑅ITE
𝐶𝑘 , 𝑗

− Δ𝑅ITE
𝐶𝑘 , 𝑗

) and its

absolute value for each driver in the test set and examine their cor-

relations with the features, using Pearson’s correlation coefficient

𝑟 for continuous and Student’s 𝑡-test score for dummy features.

We find that the GBRT is less accurate when drivers have a high

variance in pre-contest revenue, (𝑟 = 0.41, 𝑝 < .01). This is intuitive:

when the activities of a driver are irregular, their future activities

are also hard to predict. This again highlights that predicting in-

dividual treatment effect is intrinsically challenging, especially in

our context due to the huge heterogeneity of drivers. It is harder

to predict for team captains than for team members (𝑡 = 12.74,

𝑝 < .01), and for drivers in self-formed teams than for those in

system-formed teams (𝑡 = 23.07, 𝑝 < .01). Our model also tends

to underestimate the ITEs when the average hometown distance

between a driver and their teammates is larger (𝑟 = −0.02, 𝑝 < .01).

In addition, the absolute prediction error is significantly higher

when there are more teams in one contest group (𝑡 = 18.93, 𝑝 < .01

comparing groups of 3 vs. 5 teams) and when drivers’ average

hourly income of the city is higher (𝑟 = 0.23 and 𝑝 < .01).

Overall, these factors that correlate with prediction errors are

not hard to understand. Although we did not observe concerning

biases, it is important to consider these patterns when applying the

prediction models to different driver groups and new contexts.

7 DISCUSSIONS
7.1 Design Implications
We have obtained promising and actionable implications for the fu-

ture design of team contests, which could affect the current practice

of two aspects: contest design and team recommender systems.
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Figure 5: Simulated ATE of Three Prototype Contests under the Best Design and the Worst Design

7.1.1 Contest Design. Many findings about better contest design

are immediately actionable. They are mostly about how to design

incentives to balance the intensity and fairness of inter- and intra-

team competitions. For example, (1) providing an extra bonus for

the captain of the top team creates an inequality between captains

and team members, which has a negative impact on the individual

treatment effect; (2) excluding the lowest-performing driver from

bonus allocation also results in unfair treatment within the team,

which hurts the team performance in general. In a competition

group, however, it is important to make sure that all teams have

comparable levels of performance, so that no one loses the moti-

vation to win. (3), it is also harmful to give awards to every team,

as free lunch hinders the motivation of active competitors. These

design options can all be easily reversed in future competition. To

demonstrate the potential benefit of such changes, we conduct a

simple counter-factual analysis through simulation.

First, we select three real contests with different choices on

the three dimensions above. We hypothetically vary these design

choices with everything else kept the same (such as participants,

team structures, etc.), and we simulate the “expected” outcome

through predicting the ITE of every driver in the three contests

under each new design. The benefit of changing a design option

can be measured by the difference between the simulated outcome

under the new contest design and the outcome of the true design.

Table 4 lists the original design choices of the selected contests.

Through simulations using the trained Lasso model, we can

compare the expected outcome of the best and the worst possible

configurations and the configuration in reality. Because the trained

predictor is not perfect, we further adjust the prediction results by

adding Gaussian noise following (1) the prediction error distribu-

tion of the training period or the test period (depending on which

period the simulated contest fell into) and (2) the prediction error

distribution of the original contest (with the unchanged design). In-

tuitively, because all other factors are controlled, we anticipate that

the expected prediction error for the simulated contest shouldn’t

diverge much from that of the original contest.

For each simulated competition, we bootstrap 1,000 times by

sampling the number of treated drivers in the competition with

replacement. Bootstrapping helps us estimate the confidence inter-

vals of the expected average treatment effect. In Figure 5, we report

the bootstrapped average treatment effect of different simulated

designs for the 3 prototype contests, including the best, the worst,

and the original designs. We report the simulated ATE with predic-

tion error uncorrected, corrected using period-level distribution,

and corrected using contest-level distribution. Clearly, there is a

significant difference in average treatment effect between the best

and the worst design choices (26%, 39%, and 191% improvement

over the worst design respectively for Competition A, B, and C). In

Competition A and B, the expected ATE (prediction error corrected

at the contest-level) of the optimal design significantly outperforms

the ATE of the original competition (using the actual design), with

an improvement of as much as 26 percent. The expected ATE does

not outperform the true ATE in Competition C, as the original

design is already the best. Moreover, the design choices may also

affect the ROI (Revenue-over-Investment) of the competitions. As

shown in Table 4, the ROI can increase by as much as 55% from the

original to the best design in simulation.

The results above are promising. They demonstrate that by sim-

ply varying a few design options, both the drivers and the platform

can benefit significantly. Many other design options could be im-

proved based on the analysis in Section 6.1.5, although it’s harder

to demonstrate them through a simple counter-factual simulation.

Table 4: Performance of Three Prototype Contests under the
Original Design and Simulated New Designs

Period C1 C2 C3 Design

True

ROI

Best-design ROI

(with 95% C.I.)

Worst-design ROI

(with 95% C.I.)

A Train Y Y Y Worst 2.86 4.43 (4.09, 4.76) 2.86 (2.58, 3.13)

B Test Y N Y Bad 10.61 13.50 (12.68, 14.30) 10.50 (9.61, 11.34)

C Train N N N Best 2.58 2.58 (2.21, 2.94) 0.71 (0.40, 0.99)

C1: Has captain bonus for top team; C2: Has team bonus for 5th team in group;

C3: Worst individual score included in team performance and bonus allocation.

7.1.2 Team Recommendation. Our findings also shed light on how

to better design team recommender systems. For example, it is better

to first team up friends and former teammates, and then introduce

new drivers to the team. It is beneficial to combine low-performing

and newer drivers with high-performing and experienced drivers

in one team. Teaming people who are from the same hometown

and who work in similar areas can also boost performance.

7.2 Limitations
First, this study focuses on exploring predictive factors that explain

the variance of ITE across individuals, teams, contests, and cities.

Although the estimation of the ITE follows the standard practice

of causal inference, the prediction model does not guarantee that

relations discovered between the features and the ITE are causal.

Future studies are needed to establish causal relationships between

the predictors identified and the ITEs. Second, we note that the



benefit of optimized contest-design options is estimated based on

simulations. While the three design options are carefully selected

so that they are as independent as possible to other factors (so

we can control the confounds), it is not impossible that changing

these options may result in a change in others. For example, there

is a probability that dropping the bonus for the 5th team might

result in less participation. Finally, all analyses and findings are

based on field experiments and data collected from one ride-sharing

platform in one country. Our conclusions may be generalized to

other platforms, countries, and domains with caution.

8 CONCLUSION
We present the first predictive analysis of individual treatment

effects of team competitions in DiDi, a leading platform of the ride-

sharing economy. The analysis investigates hundreds of large-scale

team contests in 143 cities, involving half a million drivers, tens

of millions of rides, and a comprehensive set of features of the dri-

vers, teams, contest design, and experimental conditions. Through

linear and nonlinear machine learning algorithms, these features

demonstrate decent predictive power of individual outcomes in

team contests. Our findings present many new insights and useful

implications for the research and business practices of team compe-

tition, the sharing economy, and online field experiments in general.

Some of the findings are immediately actionable in optimizing the

design of upcoming team contests. Future directions of the work

include testing these insights with field experiments, investigating

the causal links between the heterogeneous factors and the ITE, and

generalizing the procedure to other sharing economy platforms.
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Table 5: Examples of Features with Detailed Description

Whether there is a fixed-amount team bonus for the 1st-rank team in each competition group

[Total fixed-amount bonus] & [Individual expectated bonus amount] for the 1st-rank team in each competition group

Daily Avg of total fixed-amount bonus for the 1st-rank team in each competition group

Whether the competition uses pooling (vs fixed) bonus for the 1st-rank teams in each competition group

[Total amount] & [Individual expectated bonus amount] of bonus pool for the 1st-rank teams in each competition group

Threshold Whether there is a minimal-performance requirement to get a team bonus

Whether there is an extra bonus for the captain of the 1st-rank team in each competition group

Total extra bonus for the captain of the 1st-rank team in each competition group

Other Bonus Whether there is an extra individual goal-setting bonus: one can get a reward as long as him/herself satisfies the requirement

Evaluation Metrics Whether the worst individual performance counts towards team performance and bonus allocation

Team size Number of teams in a competition group

Day of week Number of workdays in the competition

Basics Age and gender of driver

DiDi Specific DiDi age (time after joining DiDi) of driver

Productivity Daily revenue Avg. & Std. of the driver [in the baseline period] & [in 7 days before the contest] & [in 30 days before the contest]

Number of historical competitions a driver has participated in before

ITE of the driver in last competition participated

Age Std. of driver age in a team

Hometown Avg. pairwise geographical distance of hometowns

Avg. pairwise distance of the center locations of driving activities

Avg. pairwise cosine similarity of the vectors representing number of rides taken in each sub-area

Avg. & Std. of pairwise number of times competing in the same team before this competition

Avg. & Std. of number of times any half of the team competing in the same team before this competition

Absolute Avg. of team daily revenue [in the baseline period] & [in 7 days before the contest] & [in 30 days before the contest]

Relative Difference of team Avg daily revenue between this team and [the mean of all teams] & [the best team] in the competition groups

Team-driver Difference of driver Avg daily revenue between this driver and the mean of all drivers in the team

Best Team-driver Difference of driver Avg daily revenue between this driver and the mean of the best team in the competition group

Team Size Number of drivers in the team

Formulation System-formed versus self-formed

Hourly Pay Avg. of hourly pay of all drivers in the city [in the baseline period] & [in 7 days before the contest] & [in 30 days before the contest]

Supply-demand Avg. of city-level daily supply-demand rate [in the baseline period] & [in 7 days before the contest] & [in 30 days before the contest]

# of Drivers Number of drivers in the city worked [in the baseline period] & [in 7 days before the contest] & [in 30 days before the contest]

Rewarded Activity Number of days that the city has other city-level rewarded activities events during the competition

Region Administrative (Province) and geographical region of the city

City Classification Tier of the city which comprehensively represents the development, population, economics, etc. of the city

Other

DiDi Related

Demographics

Fixed 
Team Bonus

Pooling 
Team Bonus

Diversity

Region of Activity

History Team History

Competitiveness

Social Influence

Contest Design

City Properties

Team Properties

Driver Properties

Bonus 

Captain bonus

Other

Demographics

Behavioral
Contest History

9 SUPPLEMENT
9.1 Examples of Features
Table 5 shows more examples of the features with implementation

details. We construct more than 500 features in total, capturing

contest design, driver properties, team properties, and city-level

properties.

9.2 Data Split and Model Training
We follow the standard practice and split the contests in our analysis

into training, validation, and test sets based on the time of the

contests. Contests that ended on or before June 30, 2018 are used for

training and contests that fell entirely in July are used as validation

set.

To determine the hyperparameters, we conduct grid-search us-

ing the training and validation set. Apart from the model specific

hyperparameters, we also select the best configuration of feature

scales (i.e., original, Min-Max, standardization). We apply Min-Max

and standardization for Lasso and Ridge, finding standardization

performing the best. For GBRTmodels, the data of the original scale

out of all three scaling methods derives the best performance.

Finally, we use all contests that ended on or before July 31, 2018

to retrain the model and report its performance on the test set,

which contains the contests starting in August 2018.
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